- Update July 31, 2017: Here are my IFORS slides
- Update June 08, 2018: In response to an audience question at my IFORS 2017 session, I have now demonstrated that there is an upper bound for the error in the morphing approximation. See footnotes below.
- Update August 18, 2020: This new paper has the complete exact solution method that I had been seeking all along.
This year is the centenary of A. K. Erlang's paper [1] on the determination of waiting times in an M/D/m queue with $m$ telephone lines.^{*} Today, M/M/m queues are used to model such systems as, call centers [3], multicore computers [4,5] and the Internet [6,7]. Unfortunately, those who should be using M/M/m models often do not have sufficient background in applied probability theory. Our remedy defines a morphing approximation^{†} to the exact M/M/m queue [3] that is accurate to within 10% for typical applications^{‡}. The morphing formula for the residence-time, $R(m,\rho)$, is both simpler and more intuitive than the exact solution involving the Erlang-C function. We have also developed an animation of this morphing process. An outstanding challenge, however, has been to elucidate the nature of the corrections that transform the approximate morphing solutions into the exact Erlang solutions. In this presentation, we show:
- The morphing solutions correspond to the $m$-roots of unity in the complex $z$-plane.
- The exact solutions can be expressed as a rational function, $R(m,z)$.
- The poles of $R(m,z)$ lie inside the unit disk, $|z| < 1$, and converge around the Szego; curve [8] as $m$ is increased.
- The correction factor for the morphing model is defined by the deflated polynomial belonging to $R(m,z)$.
- The pattern of poles in the $z$-plane provides a convenient visualization of how the morphing solutions differ from the exact solutions.
* Originally, Erlang assumed the call holding time, or mean service time $S$, was deterministic with unit period, $S=1$ [1,2]. The generalization to exponentially distributed service periods came later. Ironically, the exponential case is easier to solve than the apparently simpler deterministic case. That's why the M/D/1 queue is never the first example discussed in queueing theory textbooks.
† The derivation of the morphing model is presented in Section 2.6.6 of the 2005 edition of [4], although the word "morphing" is not used there. The reason is, I didn't know how to produce the exact result from it, and emphasizing it would likely have drawn unwarranted attention from Springer-Verlag editors.
By the time I was writing the 2011 edition of [4], I was certain the approximate formula did reflect the morphing concept in its own right, even though I still didn't know how to connect it to the exact result. Hence, the verb "morphs" timidly makes its first and only appearance in the boxed text following equation 4.61.
‡ The relative error peaks at 10% for $m \sim 20$ and $\rho \sim 90\%$, then peaks again at 20% for $m \sim 2000$ and the servers running 99.9% busy. However, the rate of increase in peak error attenuates such that the maximum error is less than 25%, even as $m \rightarrow \infty$ and $\rho \rightarrow 100\%$. A plot of the corresponding curves gives a clearer picture. This behavior is not at all obvious. Prior to this result, it could have been that the relative error climbed to 100% with increasing $m$ and $\rho$.
References
- A. K. Erlang, "Solution of Some Problems in the Theory of Probabilities of Significance in Automatic Telephone Exchanges," Electroteknikeren, v. 13, p. 5, 1917.
- A. K. Erlang, "The Theory of Probabilities and Telephone Conversations," Nyt Tidsskrift for Matematik B, vol 20, 1909.
- E. Chromy, T. Misuth, M. Kavacky, "Erlang C Formula and Its Use In The Call Centers," Advances in Electrical and Electronic Engineering, Vol. 9, No. 1, March 2011.
- N. J. Gunther, Analyzing Computer System Performance with Perl::PDQ, Springer-Verlag, 2005 and 2011.
- N. J. Gunther, S. Subramanyam, and S. Parvu, "A Methodology for Optimizing Multithreaded System Performance on Multicore Platforms," in Programming Multicore and Many-core Computing Systems, eds. S. Pllana and F. Xhafa, Wiley Series on Parallel and Distributed Computing, February 2017.
- N. J. Gunther, "Numerical Investigations of Physical Power-law Models of Internet Traffic Using the Renormalization Group," IFORS 2005, Honolulu, Hawaii, July 11—15.
- T. Bonald, J. W. Roberts, "Internet and the Erlang formula," ACM SIGCOMM Computer Communication Review, Volume 42, Number 1, January 2012.
- C. Diaz Mendoza and R. Orive, "The Szegő curve and Laguerre polynomials with large negative parameters," Journal of Mathematical Analysis and Applications, Volume 379, Issue 1, Pages 305—315, 1 July 2011.